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Abstract 

In this paper, we develop and illustrate a framework for determining the potential value 
of global catastrophic risk (GCR) research in reducing uncertainties in the assessment of GCR 
risk levels and the effectiveness of risk-reduction options.  The framework uses the decision-
analysis concept of the expected value of perfect information (EVPI) in terms of the cost-
effectiveness of GCR reduction.  We illustrate these concepts using available information on 
impact risks from two types of near earth objects (asteroids or extinct comets) as well as nuclear 
war, and consideration of two risk reduction measures.  We also discuss key challenges in 
extending the calculations to all GCRs and risk-reduction options, as part of an agenda for 
comprehensive, integrated GCR research.  While real-world research would not result in perfect 
information, even imperfect information could have significant value in informing GCR 
reduction decisions.  Unlike most value of information approaches, our equation for calculating 
value of information is based on risk reduction cost effectiveness, to avoid implicitly equating 
lives and dollars e.g. using a value of statistical life (VSL), which may be inappropriate given the 
scale of GCRs.  Our equation for value of information may be useful in other domains where 
VSLs would not be appropriate.  

1.  Introduction 

Global catastrophic risks (GCRs) are risks of events that could significantly harm or even 
destroy human civilization at the global scale (Hempsell 2004; Baum 2010).  GCRs presently 
posing hazards to humanity include nuclear war (Sagan 1983; Turco, Toon et al. 1983; Robock, 
Oman et al. 2007; Cirincione 2008; Hellman 2008; Barrett, Baum et al. 2013) and pandemic 
diseases (Nouri and Chyba 2008). In the near to longer term future, GCRs could include climate 
change (Weitzman 2009; Travis 2010; Baum, Maher Jr. et al. 2013) and misuse or accidents 
involving technological developments in areas such as artificial intelligence (Yudkowsky 2008; 
Chalmers 2010; Sotala 2010) and nanotechnology (Phoenix and Treder 2008).  Proposed 
interventions to reduce GCR include nuclear disarmament (Robock, Oman et al. 2007), 
development and distribution of vaccines and antiviral medications (Osterholm 2005),  reducing 
greenhouse gas emissions through public policies (Aldy, Barrett et al. 2003) and various 
individual behaviors (Dietz, Gardner et al. 2009), and abstaining from developing certain 
technologies (Joy 2000). 
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A growing body of work makes the case that reducing GCR, or certain types of GCR, is 
of very high value and thus should be one of the highest objectives for society (Ng 1991; 
Bostrom 2002; Posner 2004; Matheny 2007; Tonn 2009; Ćirković, Sandberg et al. 2010; 
Beckstead 2013). Published estimates of the value of preventing global catastrophe range vary 
wildly, from $10 billion (Bostrom and Cirkovic 2008) to infinity (Weitzman 2009; Baum 2010), 
depending partly on the definition used for “global catastrophe”.  Even the low end of this 
suggests a large allocation of resources towards GCR reduction.   

However, setting GCR reduction as a high priority is not a sufficient guide for action: 
there are many open questions regarding how best to allocate resources for GCR reduction.  One 
basic question is how much to allocate toward direct risk-reducing interventions, and how much 
to allocate to research to inform these interventions.  The decision analysis concept of expected 
value of information (Clemen and Reilly 2001; Keisler 2004; Bhattacharjya, Eidsvik et al. 2013) 
can inform decisions about how much to spend on information (i.e., reduce uncertainties) prior to 
making other resource allocation decisions.  Usually in value-of-information calculations, 
decision options are evaluated using utility functions, money, or functionally similar metrics that 
have implicit commensurability between option tradeoffs, e.g. lives saved vs. dollars spent.  
However, equating lives and dollars, e.g. using a typical value of statistical life saved (VSL), 
may be inappropriate given the potentially vast scale of GCRs.  (Moreover, quantifying total 
event consequences of global catastrophe in conventional benefit-cost terms would be 
complicated by uncertainties about direct event impacts, indirect impact factors such as public 
behavioral responses, and the levels of such impacts that could be borne before reaching 
civilizational-collapse tipping points.)  We take a different, cost effectiveness based approach in 
this paper instead.  A cost effectiveness based equation for value of information also may be 
useful in other domains where typical VSLs would not be appropriate.   

In this paper, we argue that value of information based on cost-effectiveness is a useful 
tool for analysis of GCR to inform risk-reduction decisions, and we show that it can be defined 
in a practical manner. We argue that such an approach would be most valuable if applied in a 
comprehensive, integrated fashion to all major types of GCR, rather than one at a time.  We 
describe a number of challenges that would arise in such efforts, and argue that these challenges 
can be addressed.  We also provide an illustrative, though highly idealized, example that shows 
how a practical value of information calculation can work; it also provides support for our 
argument that such calculations can have considerable value, and it provides further support for 
our argument that value of information can provide additional insight when more than one GCR 
is under consideration.   

In Section 2 of this paper, we give a brief overview of the basics of the approach, and 
how to apply it to GCRs and risk-reduction interventions in a comprehensive, integrated fashion.  
In Section 3, we discuss key challenges in real-world implementation of this paper’s framework, 
and argue that these challenges can be addressed.  In Section 4, we illustrate the basic framework 
using a simple notional model of GCR from two types of near earth objects (NEOs, i.e. asteroids 
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and extinct comets) as well as nuclear war, and consideration of two related risk reduction 
measures; the illustrative example shows that such calculations can have considerable value, 
especially when considering multiple GCR.  We conclude in Section 5.  (In Appendix I, we 
provide a detailed derivation of our formula for the expected value of information in terms of the 
cost-effectiveness of GCR reduction.)   

2. Overview of Framework for Value of GCR Information 

In this section, we briefly discuss ways to approach three linked sets of quantitative 
issues: First, representing the probabilities of multiple GCRs; second, assessing the overall cost 
effectiveness of GCR reduction measures and calculating the value of information for GCR 
reduction; third, contrasting perfect and imperfect information.  More details of our approaches 
and assumptions are given in the following sections. 

2.1 GCR Probabilities  

Figure 1 is a fault tree or logic tree illustrating that there are multiple types of global 
catastrophic risks, occurrence of which is assumed to be causally independent of the others, at 
least at the level of detail used in the fault tree (e.g. nuclear war does not cause asteroid impact).  
The event “Global Catastrophe” is the top event, with round-corner nodes for a series of GCR 
types branching out below, all connected by an OR gate.  The fault tree graphically indicates that 
a global catastrophe will occur if any of the following types of event occur with global 
catastrophe-level consequences: a large NEO impact (either an asteroid or a comet impact), or 
large nuclear war, or a combination of smaller events (small NEO impact plus small nuclear 
war), etc.  In addition, Figure 1 includes square-corner decision nodes risk management for two 
types of GCR reduction options: (i.e. NEO redirection, and food stockpiling) that could reduce 
the probabilities of global catastrophe level outcomes.  Grey arrows from the square-corner 
decision nodes to the round-corner fault tree nodes indicate that the risk management decisions 
can influence the risks of global catastrophe level events.  Figure 1 also illustrates that some risk 
reduction measures, e.g. food stockpiling, can have benefits in reducing multiple types of GCR.  
Although the fault tree portion of Figure 1 is quite simple, it is intended to underline the main 
motivation for considering GCRs as a whole, and not just individual types such as asteroids, 
comets, or nuclear war: in order to assess and reduce the total probability of global catastrophic 
risk, ideally we would assess all types of GCRs and GCR reduction measures in a comprehensive 
way.  The framework also can account for interactions between GCR events, such as when 
occurrence of one type of event reduces society’s resilience to or even causes another type of 
event (Baum, Maher Jr. et al. 2013).  Such interactions between GCRs could be represented 
using larger, more detailed fault trees (e.g., by adding branches for scenarios in which both NEO 
impact and nuclear war events occur around the same time, either just by chance of timing or 
because a NEO impact somehow causes nuclear war), though it could be difficult to explicitly 
account for many GCR-interaction scenarios, and important uncertainties could remain about 
unmodeled GCR-interaction dynamics.    
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Figure 1: High-Level Global Catastrophe Fault Tree and Risk Management Decision Influence Diagram 
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Figure 2 is a generic consequence exceedance probability plot for some type of event 

(e.g. NEO impacts) with curves showing relationships between event consequence and 
probability of events with consequence exceeding that level, for both initial and reduced event 
risks.  The figure illustrates that reduction in probability of global catastrophe can be achieved 
either by reduction of probability of events, or by reduction of consequences.  Starting from the 
upper right of the figure, the point where the initial event probability-consequence curve 
intersects with the global catastrophe consequence threshold indicates the initial probability of 
global catastrophe.  The figure also includes two reduced-risk curves, one for reduced event 
probability and another for reduced event consequence.  The curves for reduced probability and 
reduced consequence have been placed where they result in the same reduction in probability of 
global catastrophe, partly to keep the figure simple and partly to emphasize the idea that GCR 
reduction can be achieved by reducing either event probability or consequence.  For example, 
NEO impact risk reduction measures could reduce the probabilities of global catastrophe level 
outcomes either by shifting the curve downwards with reduced NEO impact probabilities (e.g., 
via NEO redirection) or by shifting the curve leftward with reduced NEO impact consequences 
(e.g., increasing societal resilience to NEO impact via food stockpiling).  Thus, probabilities of 
global catastrophe for a particular GCR event type could be calculated as a function of global 
catastrophe consequence threshold, using consequence exceedance probability models for that 
event type.  Of course, development of appropriate consequence exceedance probability models 
would often require substantial research, especially when focusing on rare or unprecedented 
events, for which a lack of data often leads to substantial uncertainties and biases (Taylor 2008).     

 

 

 

 

 

 

 

 

Figure 2: Global Catastrophe Probability as Function of Event Consequence and 
Exceedance Probability 
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In many cases, there would be large uncertainties for both the direct consequences of an 
event (e.g. in terms of atmospheric soot loading from various nuclear war or NEO impact 
scenarios), as well as what threshold level of consequences would result in global catastrophe 
(e.g. in terms of the effects of atmospheric soot loading on agricultural productivity and other 
indirect effects on human society, which could be highly nonlinear if stresses could reach 
civilizational resilience-exceedance tipping points).  Such uncertainties could be modeled using 
probability distributions for the global catastrophe consequence threshold and exceedance 
probability function.  One way to represent uncertainties is to display 5th and 95th percentile 
value lines in addition to the mean value lines (Garrick 2008), as shown in Figure 3. 

 

 

 

 

 

 

 

 

Figure 3: Uncertainties in Global Catastrophe Probability Modeling 

Given the previously mentioned assumption of causal independence, Equation 1 gives the 
total probability of a global catastrophe level event within some time period, ptotal, as a function 
of the independent probabilities pj of catastrophe events of each GCR type, j, for a total of y 
GCR types.  Equation 1 is mathematically consistent with the previous statement that a global 
catastrophe will occur if any of the following types of global catastrophe occurs: a large asteroid 
impact, or a comet impact, or nuclear war, etc.   
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2.2 Cost Effectiveness and Value of Information for GCR Reduction 
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leftmost square decision node represents a decision to be made on whether to invest in research 
to inform decisions on risk reduction measures; other decision nodes represent addition to a basic 
decision on whether to measures to reduce risks.  In Figure 4, the research decision is simple: 
conduct research to better understand whether risks are currently high or low, or do not conduct 
such research.  The risk reduction decision options are also simple: invest to reduce risks, or do 
not invest to reduce risks.  The decision on whether to conduct research is made before the 
decision on whether to invest in reducing risks.  If the decision maker chooses not to conduct 
research, then they make the risk reduction decision with some amount of uncertainty about 
whether risks begin as high or low.  (That uncertainty is represented by circular chance nodes, 
and the outcomes of chance nodes are represented by diamonds.)  If the decision maker does 
choose to conduct research, then they have more information and less uncertainty about whether 
risks begin as high or low, and the decision maker can use that information when making their 
decision on whether to invest in reducing risks.   

 

Figure 4: High-Level Decision Tree for Research and Risk Reduction Decisions 

A full valuation of GCR reduction interventions, including research to gain information, 
requires some evaluative metric. Typically, decision options are evaluated using utility functions 
or functionally similar metrics.i Such metrics have implicit commensurability between option 
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simple equation for expected value of options with various attributes (Clemen and Reilly 2001), 
including tradeoffs between GCR reduction and other objectives.   

In this paper, we avoid full valuations and instead conduct partial valuations in terms of 
cost effectiveness, measured in GCR reduction per unit cost.  We focus on cost effectiveness for 
two reasons. First, a full valuation for GCR is complicated by the widely varying estimates for 
the value of preventing global catastrophe; which can range from $10 billion to infinity, as 
mentioned in Section 1. Second, many GCR reduction decisions involve allocating resources, 
such as money. 

However, equating lives and dollars, e.g. using a value of statistical life saved (VSL), 
may be inappropriate given the scale of GCRs.  Therefore, our equation for calculating value of 
information is based on risk reduction cost effectiveness, which incorporates estimates of the 
performance and costs of risk reduction options without use of VSLs.  Our cost effectiveness 
based equation for value of information may be useful in other domains where VSLs would not 
be appropriate. 

We assume that there are one or more decisions to be made about the allocation of 
resources to some combination of options for risk reduction and options for research, and that the 
decision rule is to choose whatever combination of options has best overall expected GCR 
reduction cost effectiveness among options considered in the analysis.  (Such considerations 
could occur in a series of risk-reduction decisions, in which case the goal could be to identify the 
most cost-effective interventions first, and then the second-most, and so on until a risk reduction 
budget or target has been reached.)  Then in such decisions, the decision maker should buy as 
much risk reduction (and risk research enabling better risk reduction decisions) as they can at 
whatever total cost, as long as that results in the greatest cost effectiveness.  Such decisions can 
arise when considering public policies, as well as the actions of individuals and other non-
governmental organizations.  (We assume that budgets are not an issue in the context of the risk 
reduction and research options under consideration, and we do not explicitly account for 
potential budget constraints in the following.  However, consideration of budget constraints 
could be addressed as an extension of the approach used in the following.) 

For the purposes of this analysis we ignore actual costs of research and focus on the 
amount of resources the decision maker ought to be willing to pay for the value added by the 
research in the context of the decision the research could inform.  In other words, we focus on 
finding the maximal potential benefits of research.  We assume that research ought to be invested 
in up to the point where a funder would obtain no further benefit from investing in additional 
research (because up to that point, they would get a better overall cost effectiveness by investing 
in additional research).  At that point, the expected cost effectiveness of the best risk-reduction 
option before research is equal to the expected cost effectiveness of the best risk-reduction option 
after research, including the cost of research.   

Equation 2 gives the value of research as the cost-effectiveness based expected value of 
perfect information, CEEVPI (see Appendix I for derivation):   
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The equation assumes the following: There exists a set of n available risk reduction 
options numbered 0, 1, … i… n.  Option number 0 is the status quo case, where no new (or non-
“business-as-usual”) risk reduction option is implemented. ci is the cost of implementing risk 
reduction option i.  (It costs nothing to do nothing, so c0 = 0.)  pi is the annualized total 
probability of global catastrophe if implementing option i.  (We make the simplifying 
assumption that pi values are static, or unchanging over the relevant time period.  Consideration 
of dynamic, or time-varying pi values, could be addressed as an extension of the approach used 
in the following.)  

Each ci is treated as a random variable with some probability distribution reflecting 
uncertainty about the true cost of implementing intervention i.  Each pi is also treated as a 
random variable, with a probability distribution reflecting plausible estimates of the annual 
probability of global catastrophe given intervention i.ii   

Computationally, the uncertainty is represented using Monte Carlo simulation, where in 
Monte Carlo simulation iteration m, there are sampled values cim and pim.  The risk reduction 
option s is the option with the “best” or highest risk reduction cost effectiveness in Monte Carlo 
iteration m.   

In addition to decisions on which risk reduction option to choose, there are also decisions 
on whether to first spend some resources on research to reduce uncertainties (and to more 
accurately identify which risk reduction option would be most cost effective) before making 
decisions on risk reduction options.  We denote cases whether research is conducted to reduce 
uncertainty on a particular factor using superscript b for “before” research or without information 
from research, and superscript a for “after” research or with information from research.   

Generally, research will have the greatest expected value if it has substantial possibility 
of informing a decision, i.e. a choice between risk reduction options.   However, the CEEVPI 
formula also implies that if it is expected that the best option after research is the same as the 
best option before research (i.e., if ݏ =  ), then the research still can have positive expectedݏ
value if it is inexpensive enough and also provides sufficient reduction of uncertainties in p and c 
factors.   

We provide an example, calculating CEEVPI for illustrative catastrophic NEO impact 
risks and risk reduction options, in Section 4.  The example suggests that the value of GCR 
information could be quite substantial. 

2.3 Perfect and Imperfect Information 

In the context of a decision analytic model, the value of information is based on the 
extent to which information reduces the uncertainty about the value of a particular parameter in 
the model.  Perfect information eliminates that uncertainty.  The expected value of perfect 
information (EVPI) is the difference between the expected value of a decision with perfect 
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information (where the new information influences the decision we make) and without additional 
information (where we make the decision with our initial level of uncertainty) (Clemen and 
Reilly 2001).  

We do not expect real-world GCR research to yield perfect information in the sense of 
eliminating all uncertainties.  In general, EVPI calculations are used to set an upper limit to how 
much should be spent on reducing uncertainty.  On their own, EVPI calculations cannot predict 
how valuable specific research will be in reducing uncertainty.  However, even imperfect 
information can have great value in reducing decision model parameter uncertainties by some 
amount.  Straightforward extensions of the approach to EVPI calculations used in this paper 
(based on cost effectiveness calculations) could provide methods to assess the Expected Value of 
Imperfect Information (EVII) (Clemen and Reilly 2001) and Expected Value of Including 
Uncertainty (EVIU) (Morgan and Henrion 1990).  

3. Key Challenges of Integrated Assessment of GCR 

In this section, we discuss important challenges for implementation of our framework for 
calculating value of information, and for comprehensive, integrated assessment of GCR to 
inform risk-management decisions.  We have already mentioned some of these challenges, which 
we discuss further here; we also discuss others that we have not previously mentioned. 

One challenge is that in the real world, there would often be complex interactions 
between GCRs, not all of which could be modeled.  As previously mentioned, one important 
simplification of our approach is the assumption of independence of GCRs except where 
indicated in the model.  In principle, many types of interactions could be accounted for by 
building them into fault trees or other model components, but that could require substantial 
efforts.  As with modeling of any complex system, there would be large uncertainties about how 
much of the real-world dynamics would remain unmodeled.  A similar set of challenges (and 
irreducible uncertainties) would be encountered in attempting to define global catastrophe 
consequence thresholds.   

Another challenge would be in setting appropriate thresholds for catastrophe.  An 
important simplification of our approach is that we use a binary threshold for catastrophe (i.e. an 
event is only regarded as a global catastrophe if the event’s consequences exceed the global 
catastrophe consequence threshold, however that is defined).   In reality, events of a range of 
magnitudes could be regarded as global catastrophes, either because different stakeholders have 
different definitions of what constitutes a global catastrophe, or because of uncertainties about 
what levels of direct effects from catastrophe events would reach civilizational tipping points.  
(Those uncertainties would stem partly from the difficulty of predicting indirect effects of 
catastrophe events, which involve complex factors such as the behavioral responses of large 
human populations.  However, the analytic challenges and uncertainties would be even greater if 
the aim were to quantify total event consequences in conventional benefit-cost terms, which is 
another reason to use a simpler cost-effectiveness approach.)   Differences between global 
catastrophe thresholds can have important implications for decision making.iii Decisions should 
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favor preventing higher-magnitude global catastrophes, or to decrease the severity of any given 
global catastrophe.  Furthermore, ideally decisions would be robust (not highly sensitive) to 
placement of global catastrophe threshold.  As always, sensitivity analysis can usefully examine 
the decision implications of varying global catastrophe thresholds, and uncertainty analysis can 
suggest ranges to use in sensitivity analysis.  

There also would be challenges in defining what decision procedures to actually use, and 
how to incorporate considerations such as budget constraints and timing decisions.  It seems 
unwise to take a perfectionist approach to assessing risks and risk-reduction optimality, because 
the complexity and scale of all potential risks and intervention options (including all interactions 
and combinations) could make that approach intractable.  A more practical approach could be to 
make a series of risk-reduction decisions, either at regular or irregular intervals, that would first 
implement the most cost-effective interventions (or combination of interventions), then the 
second-most, and so on until a risk reduction budget or target risk level is reached (essentially a 
greedy algorithm solution to a knapsack problem, in operations research terms).  We believe the 
latter approach would be roughly consistent with our basic framework, though our current 
framework does not attempt to explicitly account for budget constraints, nor decision 
sequentiality.  It also should be noted that our basic approach implicitly assumes the goal is zero 
probability of global catastrophe, but other targets could be used; for example, Tonn (2009) 
suggests a 10-20 annual probability of global catastrophe as an “acceptable risk” target.  Finally, 
accounting for timing of events and interventions could present substantial complications.  For 
some issues, it could be important to account for decisions of exactly when to research, when to 
implement measures, and in what sequence; the urgency of implementing various measures also 
could be important.  Although time dependencies are not explicitly reflected in the level of detail 
given in this paper, implicitly they could be incorporated into the model parameter values for 
effects of the risk reduction measures.  (For example, if considering implementation of an 
intervention today, vs. some years from now, and if the GCR minimization objective is to 
minimize the probability of global catastrophe over the next century, then for many GCRs types 
such as NEO impact, presumably analysis would show greater GCR reduction benefits from 
implementing interventions sooner rather than later.)  At least in principle, time dependencies 
could be accounted for in modules whose outputs are fed to the model structure shown in this 
paper. 

Another challenge is the fact that in the real world, there is not a single very well-funded 
actor whose prime objective is to reducing GCR cost effectively.  Instead, there are many 
potentially important decision makers, each with limited budgets and responsibility for GCR 
factors, and with various objectives that compete with GCR reduction.  Potentially important 
decision making entities include government agencies such as the US National Aeronautics and 
Space Administration (NASA), which have programs to address specific categories of GCR such 
as NEO impact risks; nongovernmental organizations such as the Open Philanthropy Project, 
which have programs to address either specific categories of GCR or all GCR broadly; 
corporations such as Walmart, whose product management decisions can have implications for 
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societal resilience, emerging technologies and other GCR factors; and individuals such as 
researchers, whose work can improve understanding of GCR factors and that have decisions to 
make about where to focus their own research efforts.  Nevertheless, if credible integrated 
assessment has identified some GCR reduction options as clearly being more cost effective than 
others, that could influence decisions by various means, especially where actors already have 
some incentives to reduce societal risks.  For government agencies, integrated assessment could 
inform budget reallocations, e.g. taking funding from low-value areas to fund higher-value risk-
reduction programs, and incentives could be provided via government rules that encourage cost-
effective risk-reduction benefits to society.  At the other end of the size spectrum, for individual 
researchers, integrated assessment could suggest which kinds of research could best lead to risk-
reduction societal impacts, which are encouraged by both formal funding reviews and informal 
norms.  Nongovernmental organizations and corporations also often combine efforts on 
voluntary stewardship initiatives and other programs to reduce societal risks, and thereby gain 
reputational rewards. 

Some of the most important challenges concern the scope of analysis, such as what GCRs 
and risk reduction measures to consider initially (given that starting-point estimates or at least 
bounding ranges would be needed for all associated modeling parameter values).iv  One approach 
that should be relatively tractable would be breadth-first: begin by taking a broad-but-shallow 
approach to modeling GCRs and risk-reduction options relatively comprehensively, but with 
little detail, and with quantitative parameter estimates aimed only at bounding ranges of 
uncertainties; then a series of subsequent, repeated model-improvement steps could iteratively 
add depth (i.e. to add detail and better quantitative estimates using the best available empirical 
data, expert judgment, etc.); decisions on where to focus model-improvement efforts via research 
could be guided by value-of-information calculations. 

4. Illustrative Example: Notional Model of NEO Impact Risk and Mitigation 

In this section, we illustrate our concepts using information in the literature on impact 
risks posed by two types of near earth objects (NEOs) as well as nuclear war.  We also provide 
illustrative modeling of two types of impact risk reduction measures (i.e. NEO redirection, and 
food stockpiling) that could reduce the probabilities of global catastrophe level outcomes.  These 
are very simple, notional models of risks and decisions, intended only to illustrate our value-of-
information concepts.  The example does not attempt to reflect all the latest references, such as 
the information on asteroid and comet impact risks yielded by the WISE and NEOWISE survey 
programs (such research has often resulted in downward revisions in catastrophe probability 
estimates for both high- and low-albedo NEOs). The example also does not attempt to estimate 
the risks, nor risk-reduction benefits, related to GCRs besides NEOs and nuclear war, although 
considering those would affect overall GCR reduction cost effectiveness estimates.  For example, 
food stockpiling could have benefits in reducing the effective consequences of pandemics, which 
is a category of GCR that is not considered in this illustrative example.   
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4.1  Illustrative Model GCRs, Risk Reduction Measures, and Assumptions 

The first type of NEO we model is “bright” or easily visible asteroids/comets, which can 
be observed and tracked long before impact using current astronomical capabilities.  The 
Spaceguard Survey is believed to have detected most such NEOs with greater than 1 km 
diameter (NRC 2010).  The second type of NEO we consider is "dark", or low reflectivity 
Damocloids, which current identification and tracking systems may not see until the objects are 
already headed directly toward impact.  Partly because of the difficulty of observing Damocloids 
using optical telescopes, there are large uncertainties about the frequencies of Damocloid impact 
(Napier 2008; NRC 2010).  Before the Spaceguard Survey, such objects were thought to be a 
small risk relative to other NEOs, but Damocloids and long-orbit objects have more recently 
been viewed as potentially posing the majority of remaining impact risk (NRC 2010).  The 
NEOWISE survey program has been using infrared to better identify Damocloids.  Presumably, 
additional investments in research using infrared, radar or other technologies could provide 
better observations of Damocloids; perhaps such Damocloid observation systems would be 
deployed as some combination of Earth-based systems, satellites, and probes. 

We also model two types of impact event risk reduction measures.  First are near earth 
orbit (NEO) object redirection measures that offer good and relatively inexpensive reduction of 
risks of asteroids that are identified and thought to impact years or decades away (Matheny 
2007).  The NEO redirection measures would reduce the probability of impact of a large 
asteroid.  However, we assume that they would not reduce the probability of impact of 
Damocloids (at least, not without additional investments to identify Damocloids, which is 
beyond the scope of this illustrative example).  The second type of risk reduction measure is food 
stockpiling to provide significant food reserves for a large number of people in case of a period 
of reduced food production (Rampino 2008).  The impact effects of large asteroids and comet 
could be broadly similar to nuclear winter and super-volcanism in their negative impacts on 
global food production.  Food stockpiles may help humanity to survive either event.  Rampino 
(2008) mentions one potential super-volcanism survival strategy would be to stockpile enough 
food (e.g. grain) to last several years until agricultural productivity goes back up.  Rampino notes 
that current inventories are only equivalent to about two months' consumption.  While difficult to 
accomplish in many parts of the world, it still might be relatively feasible without advanced 
technology, should be relatively uncontroversial (especially if production is handled in a way 
that does not drive up global food prices very much), and could have some value across a 
number of GCR hazards including war, quarantine after pandemic, etc.  In addition, unlike some 
other GCR mitigation measures, stockpiled food should retain near its purchase value in normal 
usage even in time periods where no GCR scenarios arise (i.e. if no emergencies arise before the 
stored food expires, the food can be eaten when rotated out of the stockpile and replaced with 
new reserves).   

We implement calculations for the illustrative example in a computational model using 
the software package Analytica by Lumina Decision Systems.  The computational model 
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incorporates all the defined equations and parameters.  To estimate probability distributions of 
outputs, the model performs Latin hypercube sampling, with a model sample size of 10,000 
iterations.  The model varies continuous-valued inputs according to the previously given 
probability distributions, and the model produces probabilistic values of its outputs.   

For more on relevant distributions, e.g., Uniform() and Triangular() distributions, see 
Morgan and Henrion (1990) or the Analytica User Guide (Chrisman, Henrion et al. 2007). 

4.1.1  Assumptions for Baseline P(Global Catastrophe) 

Our estimate for the probabilities of bright object and dark object impact risks is based 
partly on first estimating the total bright object asteroid impact risk, and then estimating how 
large the dark object comet impact risk is in comparison specifically to bright objects.  We 
estimate the total probability of impacts of asteroids of size at least 1 km as corresponding to a 
frequency of one in 3 × 105 years.  That is based on Figure 2.4 in NRC (2010) or the equivalent 
at NRC (2010), which indicate a 1 km object impacts approximately once every 4 × 105 years.   

We assume that only 15% of the total population of bright NEOs remain undiscovered 
(NRC 2010).  For bright NEOs that have already been discovered, we also assume negligible 
impact risk: "none of those detected objects has a significant chance of impacting Earth in the 
next century" (NRC 2010).  The simple way we reflect that in the model is to say the impact risk 
from visible/bright NEOs is 0.15 × (1/(3 × 105)). 

We assume that impact frequency of Damocloids have a probability distribution of 
Uniform(0,4) × (1/(3 × 105)), based on statement of Napier (2008) that the hazard from 
Damocloids of 1 km diameter "is unknown; it could be negligible, or could more than double the 
risk assessments based on the objects we see".  Some corroboration is provided by the statement 
of Napier (2008) that at the time of his writing, for 1 km objects, there is an "expected impact 
frequency of about one such body every  500,000 years".  Once every 500,000 years is about the 
same as the once every 3 × 105 years we assume for over-1km visible objects, but for better 
consistency and comparability with bright NEOs, we use 3 × 105 instead of once every 500,000.  
Napier (2008) also observes: "Estimates based on the mean impact cratering rate indicate that, on 
the long-term, a 1 km impactor might be expected every half a million years or so.  Again, 
modelling uncertainties to do with both excavation mechanics and the erratic replenishment of 
the near-Earth object (NEO) population yield an overall uncertainty factor of a few.  A rate of 
one such impact every 100,000 years cannot be excluded by the cratering evidence."   

All of the above numbers also have additional uncertainty factors (coefficients) of 
Triangular(0.5, 1, 2), which is loosely based on the statement in NRC (2010) that the 
uncertainties in intervals between impacts are "on the order of a factor of two".  We assume that 
these uncertainties in the visible/bright NEO frequencies are uncorrelated with the uncertainties 
in the Damocloid frequencies. 
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Some corroboration of the relative risks of bright vs. dark objects, and associated 
uncertainties, is provided by NRC (2010): "With the completion of the Spaceguard Survey (that 
is, the detection of 90 percent of NEOs greater than 1 kilometer in diameter), long-period comets 
will no longer be a negligible fraction of the remaining statistical risk, and with the completion 
of the George E. Brown, Jr. Near-Earth Object Survey (for the detection of 90 percent of NEOs 
greater than 140 meters in diameter), long-period comets may dominate the remaining unknown 
impact threat." 

Finally, for an extremely simple estimate of the annual probability of nuclear war, based 
loosely on estimates given in the literature (Hellman 2008; Barrett, Baum et al. 2013; Lundgren 
2013) we simply use Triangular(0, 0.0001, 0.001).  It seems likely that the annual probabilities of 
global catastrophe events are orders of magnitude higher for large-scale nuclear war than for 
large NEO/comet impacts. 

In our calculations, we use a simplifying approximation of annual probability as being 
equivalent to annual frequency (e.g. a frequency of 1 event in 500,000 years implies annual 
probability of 1/500000).  

Table 1 contains summaries of the assumed annual probabilities of global catastrophe 
level events from each considered GCR type.  The expressions reflect the substantial 
uncertainties. 

Table 1: Expressions for Assumed Baseline Annual Probabilities of Global Catastrophe  

 

 

 

 

 

 

 

4.1.2  Assumptions for Reduction in P(Global Catastrophe) if Implementing Each GCR 
Reduction Measure 

Although the lower bound of effectiveness of NEO detection and redirection might seem 
to be quite low, it is based partly on the idea that NEOs that haven't already been discovered 
might be significantly more difficult to detect than the ones that have already been detected.  
This may be suggested by Napier (2008, p. 226) regarding the success of NEO detection efforts 
to date: "There is a caveat: extremely dark objects would go undiscovered and not be entered in 
the inventory of global hazards." 

For food stockpiling, the assumed probability distribution for the reduction in probability 
of global catastrophe level NEO/comet impacts is Uniform(0.1,0.9).  It assumes that the 

GCR Types Baseline P(Global 
Catastrophe) 

Visible Near Earth 
Objects 

Triangular(0.5, 1, 2) * 0.15 * 
(1/(3*10^5)) 

Long-Period Comets 
(Damocloids) 

Triangular(0.5, 1, 2) * 
Uniform(0,4) * (1/(3*10^5)) 

Nuclear War Triangular(0, 0.0001, 0.001) 
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stockpile would be comprised of extremely inexpensive sources of calories and nutrients (see 
below on cost assumptions), for which there would be large uncertainties about risk reduction 
performance.   

Table 2 contains summaries of the assumed effects and costs of GCR reduction measures.  
(A status-quo option, which adds no cost and does not reduce GCR, is omitted from the table but 
is an additional option in the model.)  The effects of the measures are given in terms of their 
assumed reduction in probability of global catastrophe from each GCR type.  The costs of the 
measures are given in terms of their present value of their costs in 2012 dollars.   

Table 2: Assumed Effects and Costs of Risk Reduction Measures 

GCR Reduction 
Measures 

Reduction in P(Global Catastrophe) from Each GCR 
Type 

Costs ($ 
Billion)  

Visible Near 
Earth Objects 

Long-Period 
Comets 
(Damocloids) 

Nuclear War  

NEO tracking and 
redirection measures 

Uniform(0.1,0.9) 0 0 7.5 

Food stockpiling for 
all of humanity 

Uniform(0.1,0.9) Uniform(0.1,0.9) Uniform(0.1,0.9) 1800 

 

4.1.3  Assumptions for Costs of GCR Reduction Measures 

The cost estimate for food stockpiling assumes a world population of 7 billion, 1 year 
stockpile, and per person-year stockpile cost based on the food expenditures of the world’s 
poorest people, which is approximately $0.70 per day (GiveWell 2013).   

The cost for tracking and redirection capability assumes 30 years of costs, with $250 
million annual costs (NRC 2010). 

4.2  Example Results 

In this section, we give results from the computational model for the illustrative example, 
using the previously stated assumptions.  Figure 5 gives the probability density function (PDF) 
of the base-case annual probability of global catastrophe from both visible and dark NEO 
impacts.  (On the horizontal axis, u is “mu” or micro, i.e. 10-6.)  Contemplating probabilities of 
probabilities can be confusing, but it is easy to see in PDF figures where there are broad spreads 
of probability (corresponding to great uncertainties) or narrow spreads (for less uncertainties). 
The figure shows that there are substantial uncertainties about dark-object Damocloid risks and 
even greater uncertainties about nuclear war risks; both of the latter could be much greater than 
visible-NEO impact risks. 
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Figure 5: PDF of Baseline Annual Probabilities of Global Catastrophe 

Table 3 gives the mean cost effectiveness of GCR reduction measures (without research 
to reduce uncertainties) in terms of how much the measure reduces the average total probability 
of global catastrophe per dollar spent on the measure.  (Recall that in these terms, a high number 
for cost effectiveness is desirable, because it indicates a large reduction in global catastrophe 
probability for the dollars spent.  The calculations incorporate the global catastrophe probability 
distributions shown in Figure 5, which showed that nuclear war risks could be much greater than 
NEO impact risks.)   

Table 3: Mean Cost Effectiveness of GCR Reduction Measures (Reduction in Total Global 
Catastrophe Probability per $) 

Include Nuclear 
War In Scope? 

NEO Tracking 
and Redirection 
Measures 

Food Stockpiling 
for All of 
Humanity 

Both food stockpiling 
and NEO 
tracking/redirection 

Yes 4 x 10-17 1 x 10-16 1 x 10-16 
No 4 x 10-17 2 x 10-18 2 x 10-18 

Table 3’s mean cost effectiveness comparison would seem to suggest spending on food 
stockpiling if nuclear war risk is included in the scope of analysis, but instead would suggest 
spending on NEO tracking if nuclear war risk is not included in the scope of analysis.  Moreover, 
as previously mentioned, there are substantial uncertainties about the risks and cost effectiveness, 
and food stockpiles might actually be more cost effective than NEO tracking even if nuclear war 
risk is not included in the scope of analysis.  Figure 5a and 5b gives the PDF of the cost 
effectiveness for each GCR reduction measure if nuclear war risk is / is not included in analysis, 
respectively.  (The status-quo option has cost effectiveness of zero because it does not change 

Large Asteroid Impact 
Large Comet Impact Large Nuclear War 
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GCR probability.)  The figure indicates the overlapping ranges of the probability distributions of 
cost effectiveness of food stockpiling and NEO redirection measures.  According to the 
assumptions used in the Monte Carlo model, if nuclear war risk is included in the scope of 
analysis, there is a 0.8 probability that food stockpiling will be the most cost effective measure, 
and there is a 0.2 probability NEO tracking and redirection will be most cost effective; 
conversely, if nuclear war risk is not included in the scope of analysis, there is a 0.999 
probability that NEO tracking and redirection will be the most cost effective measure, and there 
is a 0.001 probability that global food stockpiling will be most cost effective.  

 

 

Figure 5a: PDF of Cost Effectiveness of GCR Reduction Measures if Nuclear War Risk is 
Included in Scope  

(Status Quo) 

NEO Tracking and Redirection 

Global Food Stockpiling 

Both Food Stockpiling and 
NEO Tracking/Redirection 
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Figure 5b: PDF of Cost Effectiveness of GCR Reduction Measures if Nuclear War Risk is 
Not Included in Scope  

Further research could reduce uncertainties to better determine which risk reduction 
measure would really be more cost effective.  According to the Monte Carlo model’s 
assumptions and use of Equation 5, the cost effectiveness-based expected value of perfect 
information (CEEVPI) in the illustrative examples in this paper is $2 billion if nuclear war is 
included in the scope of analysis, and $400 million if nuclear war is not included in the scope of 
analysis.  In this illustrative example, research on the risks and risk reduction effectiveness 
would have a substantial expected value, largely because of the huge uncertainties about the 
baseline risks and about the effectiveness of risk reduction measures.  The example also supports 
the argument that we can learn something valuable by doing the analysis for more than one type 
of GCR at a time. 

5.  Conclusion 

In this paper, we argue that value of information based on cost-effectiveness is a useful 
tool for analysis of GCR to inform risk-reduction decisions, and show how to apply it to GCRs 
and risk-reduction interventions in a comprehensive, integrated fashion.  We discuss key 
challenges in real-world implementation of this paper’s framework, and argue that these 
challenges can be addressed.  We then illustrate these concepts with simple example models of 
impact risks from both visible and “dark” near earth objects as well as nuclear war effects, and 
consideration of related risk reduction measures; the illustrative example shows that such 
calculations can have considerable value, and also supports looking at more than one GCR at a 
time. 

(Status Quo) 

NEO Tracking and Redirection 

Global Food Stockpiling 

Both Food Stockpiling and 
NEO Tracking/Redirection 
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Unlike most value of information approaches, our approach for calculating value of 
information is based on risk reduction cost effectiveness, to avoid implicitly equating lives and 
dollars e.g. using a value of statistical life (VSL), which may be inappropriate given the scale of 
GCRs.  Our equation for value of information may be useful in other domains where VSLs 
would not be appropriate.  

Our suggested approach could be used generally to work toward a comprehensive 
rigorous assessment of GCRs and risk-reduction options.  A useful step could be to expand and 
update this paper’s illustrative model (e.g. to reflect more recent NEO researchv and other NEO 
risk management optionsvi).  However, it would be more valuable to work towards a broader 
agenda for integrated assessment to inform GCR reduction decisions.  Ideally, the scope of such 
assessment would address all important GCRs over key time periods (e.g. the next century) and 
also key risk-reduction options of relevant stakeholders (including, but not limited to, public 
policy options of governments).  This paper’s framework could help guide steps in such 
assessment by prioritizing pieces of research in terms of value of information for reducing the 
total probability of GCRs.  While real-world GCR research would not result in perfect 
information, even imperfect information could have significant value in informing GCR 
reduction resource allocation decisions. 

Our approach could have great value in comprehensively, rigorously assessing GCR and 
risk-reduction options.  Prior GCR research is of only limited value to informing GCR reduction 
decisions.  Much of the work to date has focused on specific GCRs, leaving great uncertainty 
about which GCRs are most important to focus on.  Notable exceptions include research finding 
that GCRs from cosmic events are small relative to GCRs from human actions (2005); an 
informal survey of GCR researchers providing estimates of the probabilities of human extinction 
from a small number of GCR types (Sandberg and Bostrom 2008); analyses of interacting 
sequences of GCRs (Tonn and MacGregor 2009; Baum, Maher Jr. et al. 2013); and several 
largely-qualitative surveys (Bostrom 2002; Rees 2003; Posner 2004; Smil 2008; Cotton-Barratt, 
Farquhar et al. 2016).  These studies are insightful but do not provide rigorous quantitative 
recommendations for risk-reduction resource allocations.  We are aware of only one study, that 
of Leggett (2006) which attempts to quantitatively evaluate GCR reduction measures across a 
broad space of GCR, but that study had shortcomings such as not considering all GCR categories 
nor all potentially valuable GCR reduction measures. The modest literature available does not 
come close to resolving the large uncertainties surrounding both the GCRs themselves and the 
effectiveness of possible risk reducing interventions.  Our work suggests that comprehensive, 
integrated assessment of GCRs could be quite valuable for informing GCR reduction decisions, 
and tools can be developed for making comprehensive, integrated assessments for informing 
GCR risk reduction decisions. 
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Appendix I. Derivation of Cost Effectiveness-based Formula for Expected Value of 
Information   

In this Appendix, we provide the detail on our derivation of the CEEVPI formula. 

Our following calculations are aided by two simplifying assumptions, as previously discussed: a 
binary threshold for global catastrophes, and independence of different GCRs (except to the 
extent that GCR event interactions and dependencies are accounted for in the fault trees or other 
model components).  Then let Xj equal the value loss due to global catastrophe j.  Due to the 
binary threshold assumption, Xj is the same for all j.  Let R(t) be the risk of an event occurring 
during time period t, with R = probability × magnitude.  Then, given the independence of 
different GCRs, the total risk for y GCRs is:  

ܴ௧௧(ݐ) = ܺ(ݐ)௧௧ = ൫1 − ∏ (1 − ௬((ݐ)
 ൯ ܺ                    (Eq. 3)  

We further assume that all GCRs have sufficiently low probabilities-per-time-period pj(t) 
that the total probability of global catastrophe in that time period can be approximated as the sum 
of the independent probabilities, such that:  

ܴ௧௧(ݐ) ≈ ቌ (ݐ)

௬



ቍ  ܺ                                      (Eq. 4) 

In this paper, we evaluate possible GCR-reducing interventions in terms of their cost-
effectiveness, i.e. their reduction in GCR per unit cost.  We favor cost-effectiveness for two 
reasons.  First, cost-benefit analysis is hampered by the challenge of quantifying the value loss 
due to global catastrophe, X.  The benefit of interventions is the reduction in risk, which also 
depends on X.  While X is generally believed to be very large, quantitative estimates span a huge 
range, as previously mentioned.  In contrast, cost-effectiveness analysis does not depend on X.  
Let ci and CEi be the cost and cost-effectiveness of intervention i.  Then: 

ܧܥ =
൫ܴ,௧௧(ݐ) − ܴ,௧௧(ݐ)൯

ܿ
  =  

൫,௧௧(ݐ) − ൯(ݐ),௧௧
ܿ

 ܺ                                     (Eq. 5) 

Since X is equal for all global catastrophes, comparisons of the cost-effectiveness of 
different interventions are the same regardless of the value of X. 

We assume that there is a decision to be made about allocation of resources to some 
combination of direct risk reduction and research, and that the main decision rule is to choose 
whatever combination of options has best overall expected GCR reduction cost effectiveness 
among options considered in the analysis.  Then the decision maker should buy as much risk 
reduction (and risk research enabling better risk reduction decisions) as they can at whatever 
total cost, as long as that results in the greatest cost effectiveness.  (We assume that budgets are 
not an issue in the context of the risk reduction and research options under consideration, and we 
do not explicitly account for potential budget constraints in the following.  This implicitly 
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assumes that sufficient total resources are either being provided by a single entity or are 
coordinated in some fashion.)  

If the information’s expected effect and cost are such that even with the research cost 
included, it would achieve a better cost effectiveness than whatever would have been the optimal 
investment before the research based on expected values, then the research information is worth 
its cost.  This is true for investments in information up to the point where the expected cost 
effectiveness with research is the same as without research.  We use that relation to make an 
equation to solve for the expected value of the information in terms of everything else. 

For the purposes of this analysis we ignore actual costs of research and focus on the 
amount of resources the decision maker ought to be willing to pay for the value added by the 
research in the context of the decision the research could inform.  In other words, we focus on 
finding the benefits of research, which would result if research yields information that reduces or 
eliminates uncertainties in a decision model (i.e. turns model variable probability distributions 
into either tighter, more-accurate distributions, or into maximally accurate point values).   

We define several terms: 

There exists a set of n available risk reduction options numbered 0, 1, … i… n.  Option 
number 0 is the status quo case, where no new (or non-“business-as-usual”) risk reduction option 
is implemented.  

ci is the cost of implementing risk reduction option i.  (It adds no cost to do nothing new, 
so c0 = 0.) 

pi is the annualized total probability of global catastrophe if implementing option i. 

Each ci and pi is assumed to be a random variable with some probability distribution 
reflecting uncertainty about the variable’s true value or value in a particular instance.  p and c 
terms are assumed to be uncorrelated, i.e., covariance(p,c) values are assumed to be zero.  
Computationally, probability-distribution uncertainty is represented using Monte Carlo 
simulation, where in Monte Carlo simulation iteration m, there are sampled values cim and pim.  
The expected value of any variable x is E[x], which is found computationally by finding the 
mean value of variable x across the set of Monte Carlo iterations. 

cr is the cost of conducting research that reduces uncertainties by some amount. 

In any particular Monte Carlo iteration m, the cost effectiveness of risk reduction measure 
i is the ratio of risk reduction to cost, or CEim, where:  

ܧܥ =
) − (

ܿ
                                        (Eq. 6) 

Then the risk reduction option s with the “best” or highest risk reduction cost 
effectiveness in Monte Carlo iteration m is the option where: 
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ݏ = arg max
୧

ቈ
) − (

ܿ
                                         (Eq. 7) 

In other words,  

) − (௦

ܿ௦
= max


ቈ
) − (

ܿ
                                         (Eq. 8) 

We denote cases whether research is conducted to reduce uncertainty on a particular 
factor using superscript b for “before” research or without information from research, and 
superscript a for “after” research or with information from research.  (Thus, before research is 

conducted on pi, it is 
, and after research is conducted, it is it is 

.)  Again, we ignore actual 
costs of research and focus on the amount of resources the decision maker ought to be willing to 
pay for the total value added by the research.  We use the term w to denote the amount of 
resources the decision maker ought to be willing to pay for the total added value of conducting 
research.  (It adds no value to do no research.)  For the purposes of this derivation, we do not 
provide more detailed break-downs of the amount of resources the decision maker ought to be 
willing to pay for the value added by performing specific pieces of research  that comprise total 
value added by research v, which actually could consist of separate pieces of research on 
different uncertain factors.  (The amount of resources the decision maker ought to be willing to 
pay for the value added by each piece of research could be assessed using an extension of the 
derivation provided here.)   

Note that the best option after research, sa (which has cost effectiveness in Monte Carlo 

iteration m of 
(బ

ೌ ିೞ
ೌ )

ೞ
ೌ ) is not necessarily the same as the best option before research, sb (which 

has cost effectiveness in Monte Carlo iteration m of 
൫బ

್ ିೞ
್ ൯

ೞ
್ ).  Research that reduces but does 

not eliminate uncertainty about a factor yields imperfect information.  In a case where research 
produces perfect information about a factor, all uncertainty is eliminated about the factor after 
research.  In terms of Monte Carlo iterations, after perfect information, one of the Monte Carlo 
iterations will have randomly-sampled factor values whose are closest to the actual real-world 
factor values.   

As long as doing more research adds more value, and if we ignore the actual costs of 
performing the research, we assume that resources for research ought to be invested in up to the 
point where research would be so expensive that a funder would obtain no further benefit from 
investing in additional research (because up to that point, they would get a better overall cost 
effectiveness by investing in additional research).  At that point, the expected cost effectiveness 
of the best risk-reduction option before research is equal to the expected cost effectiveness of the 
best risk-reduction option after research, including the amount of resources the decision maker 
ought to be willing to pay for the total value added by research: 
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max


ܧ ቈ
൫

 − 
൯

ܿ
  = max


ܧ ቈ

)
 − 

)

(ܿ
 + (ݒ

                                         (Eq. 9) 

Using the best-option notation, 

ܧ 
൫బ

್ିೞ
್൯

ೞ
್ ൨ = ܧ ቂ

(బ
ೌିೞ

ೌ)

(ೞ
ೌା௪)

ቃ    (Eq. 10) 

The E[·] terms can be distributed and re-gathered because all the relevant calculations 
(i.e., both the expected-value calculations and the cost-effectiveness calculations) involve linear 
operations and because p and c variables are assumed to be uncorrelated.  (To be more specific, 
manipulation of the numerator and denominator are allowed because they are linear operations, 
and multiplicative operations are allowed because the covariance is assumed to be 0.)  
Distributing and rearranging the terms to solve for the expected value of the amount of resources 
the decision maker ought to be willing to pay for the total value added by research, E[w], 

൫ா[బ
್]ିா[ೞ

್]൯

ா[ೞ
್]

=
(ா[బ

ೌ]ିா[ೞ
ೌ])

(ா[ೞ
ೌ]ାா[௪])

    (Eq. 11) 

[ݓ]ܧ = ܧ 
(ೞ

್)(బ
ೌିೞ

ೌ)

൫బ
್ିೞ

್൯
− ܿ௦

൨    (Eq. 12) 

Thus, the above expression for E[w] gives the value of research as the cost effectiveness-
based expected value of information, CEEVI:  

ܫܸܧܧܥ = ܧ 
(ೞ

್)(బ
ೌିೞ

ೌ)

൫బ
್ିೞ

್൯
− ܿ௦

൨    (Eq. 13) 

This formula for CEEVI actually applies to both perfect information and imperfect 
information cases.  However, our focus in this derivation is on the limiting case where the 
research yields perfect information, which provides the upper limit to the value of research, i.e. 
the cost effectiveness-based expected value of perfect information CEEVPI.  It turns out that 
when used in Analytica software by Lumina Decision Systems, the above CEEVI formula can be 
used in a straightforward fashion to set up the Monte Carlo simulation computations for CEEVPI 
(by directly using each factor’s Monte Carlo sampling values in each Monte Carlo iteration) and 
that is what we use in the illustrative Analytica model accompanying this paper.  (Computation 
of the cost-effectiveness based expected value of imperfect information CEEVII would require 
an extra step to simulate after-research imperfect-information probability distributions for each 
factor, instead of after-research perfect-information point values.) 
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i For an example of a canonical utility function based decision analysis framework for one GCR category, asteroid 
and comet impact risk, see Lee et al. (2014). 
ii For an illustrative example of a probability distribution reflecting uncertainty about an annualized global 
catastrophe probability, see Figure 5 in Section 4.2.  For more on such probability distributions, see Chs. 4 and 5 of 
Morgan and Henrion (1990). 
iii For some GCR types, it may not be most useful to think in terms of consequence-exceedance thresholds, but in 
terms of probabilities of various possibilities, such as in future “artificial superintelligent catastrophe” scenarios.  
However, modeling approaches such as fault trees could be useful for some such scenarios (Barrett and Baum 2017). 
iv There are also related challenges in selection of metrics, such as for event consequences: whether to focus on 
estimated fatalities over some specific time scale, or to also consider economic impact, etc.  Even choosing cost 
metrics for use in cost-effectiveness analysis presents challenges; in this paper we assume cost is defined in 
monetary (dollar) terms but those have limitations (Baum 2012), and scarcities exist for other resources such as 
labor capacity.   
v See, e.g., Reinhardt et al. (2015). 
vi For example, there are a number of options for alternative food sources during a crop-failure crisis (Denkenberger 
and Pearce 2015).  Those potentially could be more cost effective than food stockpiling, but we believe their 
effectiveness also would have greater uncertainty because of complexity, etc.   

                                                 


